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By means of the identity operator and vertex operator technique, reparametriza- 
tion invariance and BRST symmetry are proven for the heterotic string with 
Wess-Zumino term coupling the fiber bundle. The motion space of the string is 
assumed to be a direct product M a | G of a Minkowski space M a of dimension 
d with an intrinsic group manifold G of dimension dG, and turns out to give the 
critical dimension. 

1. I N T R O D U C T I O N  

By means o f  the conformal  field theory, Witten (1986a,b) developed a 
new mathematical  f ramework in noncommuta t ive  differential geometry,  
associated with the derivative given by the BRST charge Q. Then, using the 
method  o f  the interacting vertex o f  midpoint  type, he constructed a 
superstring. An  integration o f  the string function and an analog o f  the wedge 
p roduc t  * have been used to form an interaction o f  C h e r n - S i m o n s  type 

q b ,  ~ ,  (I). The axioms obeyed by the system of  S, * ,  and Q are as follows: 

fQW=O, <IlW> (1.1a) 

f Vl * qJ2 * ~'3 = < V3 [qJ, [~g2[~P3 > ( l . l b )  

Q(A * B) = (QA)  "k B + ( - ) a A  * (QB)  (1.1c) 

(A * B) * C= A -~ (B * C) ( l . ld) 
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The action 

S =  * Q q J +  ~ * ~ * t F  (1.2) 
\ 

is then invariant under the gauge transformation 

6Ud=Qe - e * ~ + ~ * e  (1.3) 

The string overlap is used to construct the vertex operators. For 
instance, the general coupling of n strings Iug~, ~2 * " " " * U?N is defined 
in terms of a vertex such that the left-hand side of string i equates with the 
right-hand side of string i + 1. Groos and Jericki (1987a-c) gave extensive 
results for the open-bosonic string and superstring and proved the gauge 
invariance by using conformal field theory. 

In this paper, based on the Hilbert space of first-quantized creation 
and annihilation operators for the (2, 0) heterotic superstring with Wess- 
Zumino (WZ) term coupling the fiber bundle, we construct a superstring 
field theory and prove its gauge invariance by using conformal field theory. 

The organization of this paper is as follows: In Section 2 the string and 
overlap conditions are given. In Section 3 the identity operator and 
three-string interacting vertex are derived. In Section 4 the reparametriza- 
tion invariance and BRST symmetry of this theory are proved. 

2. T H E  S T R I N G  C O N S T R U C T I O N  A N D  O V E R L A P  

The motion space of strings is assumed as a direct product of 
d-dimensional Minkowski space Md with a group manifold of dG dimen- 
sions, i.e., Ma | G. In Xu et al. (n.d.) (hereafter referred to as I), we derive 
the (2, 0) heterotic string coupling fiber bundle. The Lagrangian takes the 
form (with the same notation as in I) 

L = L1 + L F  (2.1a) 

L 1 = L~ + L w z  (2.1b) 

1 - 1 
e _  ~L 1 = - - ~  (g.Vg~g + kg~,Vb~g) auto= a,<p ~ - i-~ g~jcXr~(Dus162 

+ 2z7 v?~wv O,q~ + s @~Z a) - 2iT~a;~ax~x~TUx ~ + h.c.) 

(2.1c) 

x GA.(eP) -- 2F~r163 a O.)~BCpA?utP n (2.1d) 
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The heterotic superstring model can be described by the set of  x(a),  
2(a), ~(~), Z(a), ~(a) ,  and their conserved currents J=(o-) with conformal 
dimensions 0, i ~ 1 l ~, ~, l, ~, ~, and 1, respectively. The commutat ion relations 
among their modes read 

[q',/~J] = i6 ij (2.2a) 

[g i ,  ~j  ] = mC~m + n,OC~ij (2.2b) 

( 1 )  '/2 6 ab (2.2c) [fl~, fib] = i -~ fabcflC +.  + nbm +.,o 

{S~,, eb } = 6abam +,.0 (2.2d) 

{t~,, Pn } = 6~!6m + ,,0 (2.2e) 

{u~,, < }  = 606m+~.o (2.2f) 

where f fbc are group constructive constants. 
To perform the quantization in the BRST scheme, one has to intro- 

duce a set of  canonical ant icommuting FP ghosts c(z, a), g(z, a) as well as 
a set of  canonical commuting FP ghosts e(z, a), ~(r, o-) with conformal 
dimensions 2, - 1 ,  and 3/2, - 1 / 2  respectively. The commutat ion  relations 
read 

[Cm, G] = (~m+n,O ( 2 . 3 a )  

[era, ~',] = am + ,,,o (2.3b) 

We are now in a position to derive the overlap equation for the above 
fields. For  an N-string vertex [VN ) ,  we have the overlap equations 

x(rr) = x ~- '(~ - cr), P(a) = p r -  1(~ 7 - -  0") (2.4a) 

cr(a) = C ' - I ( ~  _ a), U(a) = U - ' ( r t  -- a) (2.4b) 

Jr(a) = _jr( ;~  _ a), (0 < a <- ~/2) (2.4c) 

7 = ( 1 , 2 ,  3 , . . . , N )  

= ~'___A ~+ - 1(7r - o9 
Ar (a) ( + i A ~ -  l ( ~ _ a )  

A field may be any one of  the Z, 4, ~O, e fields, 

= ~ i ~  r -  *(rt - ,r) 

U(rc -- a) (iU- 1(7~ G) 

For the Virasoro generators, we have 

L ' (a)  = L ' -  '(• -- a), 

(NS string) 
(2.4d) 

(R string) 

(NS) 
(2.5) 

(R) 

0 < a -< ~r (2.6) 
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It is readily known from (2.6) that the operator K, = L , -  ( - 1 ) ' L _ ,  
would annihilate II). In other words, K, will be the derivative correspond- 
ing to the integration of (1.1a). The overlap equations for an identity 
operator I I )  can thus be obtained similarly. 

3. THE DERIVATION OF IDENTITY OPERATOR AND 
THREE-STRING INTERACTION VERTEX 

We first consider the explicit expression of the identity operator ]I) in 
terms of the overlap equation for a single string. In the case of a field 
having integer conformal dimension, the identity operators IU), ]lgh), ]I s) 
have the overlap equations 

[x(a) -- x0z - a)] II x) = 0 

[p(a) + p(rc -- tr)] I/x5 = 0 

[c(a) + cot - a)] [I gh) = 0 

[~(~r) + e(rc - ,r)] IF h) = o 

[J(a) + J(x - o)] IIS> = 0 

or equivalently, resolved into their modes: 

[~l~m + ( - -  ) m O l ~ m ] [ I  x )  = 0 

[e,. + ( - 1)me_,. lJZ g~) = 0 

[C m - -  ( - -  l) 'c_,,,]]I gh) = 0 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 

(3.2a) 

(3.2b) 

(3.2c) 

[J~, + ( - 1)'J"_,,] ]I J) = 0 (3.2d) 

II x) and [I gn) in the Gaussian form of creation One may then write 
operators. From (3.1), we are led to unique expressions for them: 

] U ) = e x p { - - ~  ~ = l ( - 1 ) ' ~  _a'.~z'._ }tO) (3.3a) 

[I gh) = exp (-- 1)"e_,e_, ]0),/2 (3.3b) 
n 1 

where 10)1/2 = Ic0 = 0). For the field having a half-integer conformal dimen- 
sion, the Gaussian expression of its identity operator can be found by using 
the Neumann function via conformal mapping (Gross and Jericki, 1987a- 
e). Passing over the computation of the correlation function, we may give 
the Gaussian form of the creation operator for the identity operator as 
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(consider the Nevieu-Schwarz string only) 

{1 ~ d~,i,,,d~,}lO) (3.4a) [I x) = exp 2 ,,,.. = ,/2 

2 }, [I x) = exp S~mlmnS~_ n O) (3.4b) 
m,  1/2 

1I~) = exp t_mlm, t_ ,  0) (3.4C) 
m,  I /2  

I1% = exp U_mlmnU_n O) (3.4d) 

1I *gh) = ex i~_rnTT_n O) (3.4e) 
k m , n  = 1/2 

respectively, where the Neumann functions are 

' l - - /  /'OcO'~ i/2 1 (&o'~ ~/2 
I(p, p )=t p,S (<,,-<,,') top') (3.5a) 

1 f-z z'-]f&o"~ 112 1 (0o9'~ I/2 (3.5b) 
I(p,p )=~L;+-7-Jt~p--Tp,) (co-co')\~'pfi/# 

The corresponding quadratic forms are 

A;" = da ~--~n da' 2~,(a)/+(a, a )2,,(a ) (3.6a) 

A~= da ~-~ da" ~ + = ' ,, .,-,, ~ X<r(a)I X,.r(a ) (3.6b) 

f~ 1 I ~ 

f: 'r- A+ = a a ~  da' 
~z d - - n  

1 
r a')G:,(a') (3.6e) 

r + ~r # I[#cr(ff)I r ) (3.6d) 

where the superscript + denotes the creation operator parts. The ease of 
constructing three-vertex operators are similar. Through the same manipu- 
lation, their explicit forms read 

1 3 - " ' " " - - "  J ' - "  (3.7a) 
r , s  ~ l m , n  = I 

IVY> = exp 5 ~ ~ (3.7b) da_(r)mK~,,d"Y2 i0) 
r , s =  1 r e , n =  1/2 



2 3 9 4  X u  et aL 

{13 } 
[V~)=exp ~ ~ ~ S~(~)~K~.S~(~). lO) (3.7c) 

r,s = 1 m,n  ~ 1/2 

= _ t~(~2 IO) (3.7d) IVy) exp ~ 2 2 t~(~K~. - 
r,s = 1 m,n ~ 1/2 

u~(~K~,u"(~2 I0) (3.7e) I Vg>=exp ~ 2 - - 
r,s = 1 m,n  ~ 1/2 

Here the Neumann functions are given by 

KX(p, p) = In(~o - oY) (3.8a) 

=(~r 1 (63f0'~ 1/2 
KZ(p,p ') = KZ(a~, o)') = Kr ') = K~(p, pl ) \ O p ]  o) - to' \Op' ] 

(3.8b) 

3~ 1 309' 
KJ(p, p') - (3.8c) 

Op (co -o~')  2 Op' 

and the quadratic form is given by 

f 1 = o. )] A , v ( o .  ) A A do- ~ do-' r (m , + ~ , ~-~ ~ A cy(o.)[Kry ( o - ,  . (3.9) 

where A is any one of the fields x, 2, Z, r ~O. Vertex operators for 
conformal and superconformal ghost fields are given by 

} r ghrg r Ivg3 h) exp bm.Kmn nCm IO) (3.10a) 
[r ,g  = 1 m,n  = 1 

f ~ ~ ,  i~r [ (sghrg~)r  t10) (3.10b) I v%gh> = exp ,- - - m ' - m n  . - -n  
k r , g  = I m,n = 1 

Here the Neumann functions are given as follows: 

, 1 rz z'] 

l [ z  z'l(_~.~'~'" 1 (&o~ ''2 
K~"(P, P 3 = ~  ? + z j \ O p  ) o ~ - o ) ' \ - ~ p )  

where 

1 + iei~ U2 
Z i  r = ((.Dir) I/2 = Zr  ~1 - iei-----~J ' r = 1 , 2 , 3  

(3.11a) 

(3.lib) 
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and the quadratic forms are given by 

A "~ = da da" e gghrs(6, a )] ecy(O" ) ~ (3.12a) 

A e~ = de  da '  flry(~7)[Ksghrs(a, a')] + f ; ( a ' )  (3.12b) 
d - n  

respectively, while [0>~/~ = ICo' = O> = ICo ~ = O> = fCo ~ = O> has ghost num-  
ber 3/2. 

We introduce the following modified vertices for superconformal 
ghosts: 

i v~gh>= X(2) e -.(=/2)1V~gh> (3.13a) 

Here, two midpoint modification factors, the picture-changing operator 
and the inverse picture-changing operator, are as follows: 

X = e ' ~  P%1~+ (I-~-CA/2k) 1,2 j~(~c( 6~/'~ j Z~Zbz,.jj~ 
+ C 0r + e2~2qC 

Y = C 0r e - 2 *  

where r and ~/are anticommuting variables with conformal dimensions 0 
and 1, respectively, while e ~' and e-* ,  denoted by e ~' = 6(e) and e-~' = 6(6) 
formally, have ghost numbers 1 and - 1 ,  respectively, whose conformal 
dimensions are 3/2 and -1/2,  respectively. 

4. THE Q U A N T I Z A T I O N  OF THE STRING 

In order to quantize the heterotic superstring constructed above, we 
introduce the BRST charge Q as follows (Xu et al., n.d.): 

, 
,z -3 '~-~ -- - o _ s e _ s  m+ - m -~n Q = ~ L _ s e s + ~ . F m e s  - ~ ( m  n ) ' U  -3 ?.~ s: 

x :Oks~L~.eL_~.: - ~  :eE~.~.eL+s: - ~  :eLsOk~.e~,+~. - 0~c,: (4.1) 
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where 

( ) 
�9 - s  - -  m " m  �9 "~ n "ll~(P)...s_m-mll(g(7)'. 

1 
+ 2[ 1 + CA/2k] :J~{-P)~J'~P): (4.2a) 

(1 1 {~ ..l~p~ . ~ .  F~? = ,.V .'~ s~t(P)- m--mt'Pt(P)" + ~ + Ca/2k) 1/2 "-~ - , . - . ,  �9 

} " l ~ t  Y s - - t - - m  s . ~ t (0"~.//~) ~ "R'('~)/'~0t(P) S ~ t ( z )  �9 , A , . V  :#~t('C)u~t('r): + 2 : S ~ : ( z ) ~ z ( r ) :  

(4.2b) 

Ks = L. - ( - 1 ) 'L_ .  (4.2c) 

We can prove  that  K .  and Q are mutual ly  related as follows: 

K.  = [e~, - ( -)"e~,] ,  Q = ~, [L,] - ( - 1)"L,]] = L .  - ( - 1 ) "L_ .  

(4 .3a )  

F " = I Q '  ~ 

(4.3b) 

where 

L,, = L'~ + ~ (n + m) :~  5 . , ~  " + ~ (~ n + m )  :e~._, .~ : - Dct6..o 

= L'. + L gh + --,'~-~gh + D~6..o (4.3c) 

with the D representing the number  o f  strings. Fo r  the identity opera tor ,  
D = 1, while for  the three-string vertex, D = 3. 

We  are now in a posit ion to demons t ra te  the reparamet r iza t ion  and  
BRST invariance o f  the vertex opera to r  (Green  et al., 1987; Trami ,  1991), 
namely  

K . l V o )  = 1 (4.4a) 

Q [ V o )  = 0 ,  D = 1,2 . . . . .  N (4.4b) 
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By an algebraically tedious (but simple) calculation, one can prove that 

K~N [U) = _ d  N(--)Nllx) (4.5a) 

Kg% [i,~h5 = ~ N ( - )  ulI'gh 5 (4.5b) 

K~NIIjS= dG 1 N( _)N[is 5 (4.5c) 
2 [ 1 + CA/2k] 

1 3 2 N - -  1 

K~NIVS3) -211 +CA/2k]~I  ~ = ~=t ~" (2N-m)mK("s'~f'~-mlV~) (4.5d) 

5 d r 
K2CN IVy) = N( __)N ~ 2 V3 ) (4.5c) 

2 

5 1 
K~2NIv~) = N(--)N---7-~ 2 IVy) (4.50 

In conclusion, we obtain the following results: 

g2u [I) = K2N Y('~)6(e(7))lI")li~)lIr 

= k2~N( - 1)NI I5 

K2N 1I/"3 ) = k'2NX('~)e - '~l V~ )1V~ )l V3 r )l V~ )l V3J)I v'3gh)] V7 gh) 

= k'zNN( - 1)NIv3) 

where 

(4.6a) 

(4.6b) 

k2u = - 4  + k~N + k~N + k~u + k~u + kC2N + k~u + k ~  + k ~  

{ d d G 4 d _ ~ 4  dG dG 1 
= - 4  ~ - 15 I + C A / 2 k  2 [ l + C ~ / 2 k ]  

~ ~ 1 3 -  N( -1W 

~ 3 {  aG 1 
, aG +d+~+_~aa+ 

kzN = 4 + . d -~ [ 1 + CA/2k] 

+5+~-26 

(4.6c) 

4 dG 
15 1 + CA/2k  

(4.6d) 
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It follows from (4.6c) and (4.6d) that when 

d = 2 - - -2  dG 4 d e (4.7a) 
15 15 1 + CA/2k 

I = 2 2 - 7 d G  2 de (4.7b) 
5 1 + CA/2k 

k2N, k'2N vanish. These results are the same as Xu et aL (n.d.) and Show the 
reparametrizat ion invariance. For  the other boundary  condit ions we get a 
similar result. F r o m  

O[I>= ~, o_~kslI> (4.8a) 
s=l 

1 ~ ~ U sksiV3) (4.8b) OlV3> =3  - 
z = l s = l  

we may  infer the BRST invariance. 
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